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Abstract
In a previous paper the rate of thermal expansion of a long, slender insulating bar has been
worked out. Our present aim is to extend that work to the thermal expansion rate of not only a
long metallic bar, but to further generalize it to a thin metallic slab of arbitrary shape.
Assuming that the thickness of the slab is small compared to the linear dimension of its area we
again take advantage of the two distinct, disparate timescales to turn the familiar problem of
thermal expansion into a time-dependent problem of the rate of the expansion. Based on the
previously established finite physical momentum of an acoustic phonon when translational
invariance is broken, we show that the combined pressure of the phonons and the free electrons
due to their outward momenta would suffer a Doppler reduction as the specimen expands upon
heating. This Doppler reduction gives rise to damping of the expanding motion, thus yielding as
a first result the time of thermal expansion of a long slender metal bar. The generalization to the
important case of a thin metallic slab of any shape is then worked out in detail before a
concluding section containing a long physical discussion and summary.

1. Introduction

The rate of thermal expansion of a long, thin, insulating bar has
been derived in a recent publication [1] to which the present
paper should be considered as a sequel.

How fast a long bar or a thin disk expands when heated is
not only of scientific interest but also of practical significance.
As a concrete example, take the recent proposal for an x-
ray free electron laser oscillator with an energy-recovery
linac [2, 3]. One of the main components is an x-ray optical
cavity with thin crystal plates (0.05–0.1 mm) of diamond or
sapphire used as Bragg diffracting mirrors for x-rays. The
incident x-ray pulse about 1 ps long will heat the crystal due
to photoabsorption of about 2% of the incident pulse, with
an absorption time ∼1 ps. How fast the temperature rise
�T leads to the thermal expansion of the crystal is of great
importance, for this expansion is related to the change of the
lattice parameter, which is of crucial importance for the Bragg
scattering from the crystal. Other relevant interesting work
such as that on an infrared radiation pyrometer for transient
temperature measurement and a photoelectric installation for
micrometric length-change measurement can be found [4].

Generally, in this age of nanophysics, thermodynamic
objects and the means to treat them must be adapted to very
small sizes and very high speeds of temperature modulation
for which the time of thermal expansion is intimately involved.

Although thermal expansion is a familiar topic in standard
solid-state texts [5] there seems to be very little work
on how fast the expansion proceeds. This is probably
because it belongs to the more complex realm of time-
dependent statistical dynamics of thermal non-equilibrium,
involving various physical aspects of vastly different length
and time scales as discussed in detail previously [1]. An
approach that can satisfactorily encompass all these physical
features, without the encumbrance of impossibly complicated
mathematical and/or numerical tools, had to be found. This
is what was accomplished for the problem of the thermal
expansion rate of a long, thin insulating bar. Our present goal is
to extend that study to the problem pertaining to a thin metallic
or insulating slab of any shape. For this purpose we shall
follow the pattern of our previous work, but adapt it to include
the combined influence of both the phonons and the free
electrons in a metal. For mathematical reasons this is done in
two steps. The first step is the calculation for a slender metallic
bar, followed in the second step by the generalization to a
thin metallic slab of arbitrary shape, culminating in an explicit
expression for the time and speed of the thermal expansion.
It might be counterintuitive that, as it turns out, the added
influence of the free electrons in metals turns out to make the
damping to the expanding motion a little greater and hence the
expansion time a little shorter than for insulators. The physical
reason will be explained.
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In section 2, based on the concept of the two distinct
timescales—one for thermal-kinetic equilibrium, the other for
thermal-mechanical equilibrium—in the context of the speed
of thermal expansion as in [1], we turn a problem of time-
independent thermal equilibrium of thermal expansion into
a dynamic, time-dependent problem of the rate of thermal
expansion. Section 3 recalls how a failed first attempt at
finding the expansion rate was corrected by incorporating the
concept of the physical momentum of an acoustic phonon
(when translational invariance is broken) into the picture [6]
and how its reflection from the expanding free boundary of the
specimen leads to a Doppler-induced reduction of the phonon
momentum and hence to the dissipation of energy. We also
include, when compared to our previous work [1], the influence
of the free electrons in a metal which is now combined with that
of the phonons, culminating in an expression for the damping
coefficient for metals ηmetal in section 4.

In most practical applications it is the expansion time of
a thin disc, rather than a long bar, that is of interest [2–4].
Therefore, in section 5 the time of thermal expansion of a
slender long bar is generalized to that of a thin insulating or
metallic slab of any shape. Indeed, our theoretical result is
found to agree qualitatively and semiquantitatively with the
experimental result of Tang et al [4]. Such results should be of
practical importance in experimental applications that involve
fast temperature modulations. The final section 6 ends with a
physical discussion and summary.

2. Thermal equilibrium turned into thermal
expansion

In a recent work [1] the following has been shown. (1) Counter
to intuitive expectations the process of dynamical thermal
expansion of a long, thin bar (establishing thermal-mechanical
equilibrium) is generally much slower than the process
of merely establishing temperature equilibration (thermal-
kinetic equilibrium) upon heating because two vastly disparate
timescales are involved. (2) Equally important is the
recognition of the fact that the finite speed of thermal
expansion hinges upon an earlier-derived result [6] that an
acoustic phonon of wavevector �q �= 0 carries a finite
physical momentum that arises from anharmonicity, provided
translational symmetry is broken. (1) can be easily established
for a long, thin bar of thickness b and length L as long as L �
b. For details on the physical reasoning or the mathematical
steps references [1, 6] should be consulted.

Following the formulation of [1] we now start from the
expression for the ambient pressure P of a metallic system at
temperature T [5]:

P = −
[

∂

∂V

(
Ustat.latt + 1

2

∑
�q

h̄ω�q
)]

T

+ Pph + Pel (1)

where

Pph = −
(

∂Uphonon

∂V

)
S

= −
∑

�q

(
∂ h̄ω�q
∂V

)
S

〈n �q(T )〉 (2)

is the contribution to the pressure by the phonons, 〈n �q(T )〉
being the thermal averaged number of �q-phonons. In the
Grüneisen approximation, (∂ h̄ω�q/∂V )S = −γionh̄ω�q/V so
that

Pph = γion
∑
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∑
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= −
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V

)
= 2

3

Uel

V
(7)

is the contribution to the pressure by the gas of free electrons in
the metal. Here nx , ny, nz are the quantum numbers specifying
the discretized electron momenta which remain unchanged in
any variations when the entropy S is kept constant. Uel is the
total internal energy, with the equivalent electronic Grüneisen
coefficient identified, here, as γel = 2/3. Incidentally, we
could similarly show that γphoton = 1/3 [4]. The first
term in equation (1), on the other hand, is the contribution
from the energy of the strained lattice in static equilibrium,
including that of the zero-point fluctuations. Neglecting the
small ambient (e.g., atmospheric) pressure P we see that
equation (1) expresses the mechanical balance of the (positive)
outward pressure of (Pph + Pel) by the force of the strained
atomic springs that tend to restore the atoms to their original
configuration.

Although the above equation (1) is supposed to describe
only the time-independent state of total thermal equilibrium
at temperature T after the full thermal expansion has been
attained, we may now take advantage [1] of (1) to mean
that the temperature equilibration process or ‘thermal-kinetic
equilibrium’ [7] has essentially been completed while the
much slower thermal expansion process towards establishing
‘thermal-mechanical equilibrium’ is just starting, isothermally.
Recalling that a temperature rise �T is accompanied
simultaneously by an increased phonon pressure �Pph as
well as an increased electron pressure �Pel, according to
the kinetic definition of temperature [7] we may re-interpret
this equation (1), originally for thermal equilibrium, as now
describing a quiescent elastic lattice (a bar of cross-section A)
being pulled subsequently outward by the increased pressures
(�Pph + �Pel) through numerous quasi-static stages of the
sluggish dynamical expansion process. At each one of these
stages the thermodynamic variables T , P and V can thus be
assumed to have well-defined values. However, unlike the total
thermal equilibrium, in which the two terms of equation (1)
balance each other, the outward (phonon + electron) force of
the second term would now be too large to be balanced by the
restoring force of the strained atomic springs until the thermal
expansion has finally completed. This is of course why the
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system keeps expanding until thermal-mechanical equilibrium
is reached. Furthermore, in the Grüneisen approximation it is
well known that (∂ω�q/∂V )S = −γionω�q/V , γion being the
ionic Grüneisen coefficient, so that �Pph ∝ γion�T , based
on equation (2). Other anharmonic effects such as phonon–
phonon coupling are neglected by treating the phonons as free
bosons, rendering the harmonic lattice vibration modes still
independent of each other [5]. Similarly �Pel ∝ γel�T based
on equation (6).

3. Attempts at finding expansion time

For a long thin insulating bar of cross-section area A and
length L with one end fixed (this could be the stationary center
of mass), we assume that under the above mentioned pull at
the free end by (�Pph + �Pel) every spring between two
neighboring atoms separated by lattice spacing a is stretched
by the same amount 〈x(t)〉 at any time t . But what should be
the equation that governs 〈x(t)〉? Now that the needed pieces
of physics seem to be in place it is elementary to show that a
simple work–energy consideration yields a Newton equation of
motion for a whole transverse layer of atoms in the long bar:

d2〈x(t)〉
dt2

+ ω2
e 〈x(t)〉 = a2 (�Pph + �Pel)

meff
(8)

where ω2
e = k

meff
≡ 3k

m N2
(9)

k being the atomic spring constant, m the atomic mass and N
the number of transverse layers in the bar.

Unfortunately, the above equation leads only to an ever-
oscillatory (at frequency ωe) stretching denoted by 〈x(t)〉,
rather than the anticipated final steady stretching as t −→ ∞.
A crucial damping mechanism that would lead to a steady
〈x(t)〉 instead of an ever oscillating one is missing! This
is now remedied by invoking (2) of section 2, namely, that
an acoustic phonon of wavevector �q �= 0 can couple via
anharmonic interaction to another acoustic phonon of �q = 0 to
form a composite phonon of the same �q, provided translational
invariance is broken, as in the present case of a bar of finite
length in contact with an external heat reservoir. It is via this
mate of �q = 0 that it becomes possible for the composite itself
to carry a physical momentum which has been shown to be

�p�q = nγion�q (10)

where n is the dimensionality. The presence of the Grüneisen
coefficient γion is the signature of anharmonicity.

We shall now make another attempt at the equation for
〈x(t)〉 by recalculating the pressure of the forward-rushing,
bullet-like phonons and electrons impinging on the receding
(with velocity vend) free end of an expanding bar, this time
taking the forward and the reflected momenta of each phonon,
as well as electron, into account.

For the sake of completeness we reproduce briefly the
calculation for the phonons [1]. With the velocity of the
forward phonon relative to the free end given by cs − vend,
the acoustic phonon frequency ω�q is Doppler shifted to

ω′
�q = ω�q(cs − vend)/cs, where cs is the sound velocity.

Correspondingly the momentum of each such phonon is
changed from �p�q of equation (10) to the relative momentum
�p′

q along the longitudinal direction:

�p′
q = 1h̄γionω

′
�q

cs
= �p�q

(
1 − vend

cs

)
. (11)

Correspondingly the outward phonon pressure on the free
end is easily shown to be Doppler shifted to

P ′
ph(T ) = Pph(T ) + δPph(vend) (12)

where Pph(T ) is given previously by equation (3) and

δPph(vend) ≈ −2vend

cs
Pph(T ) (13)

is the Doppler-shift correction to the phonon pressure. Note
that the latter is proportional to vend with a negative sign. This
provides part of the missing link needed for damping.

4. Influence of free electrons on expansion time

A similar calculation can be carried out for the electrons as
follows. Implicitly we are again assuming that the electrons
have first achieved temperature equilibration or thermal-kinetic
equilibrium as in section 2. The free electrons cause their own
outward pressure Pelec of equation (6) on the free end of the
bar. As the quasi-stationary (compared to vF) lattice expands
with velocity vend > 0 the end of the bar is receding from the
impinging electrons that give rise to the electronic pressure.
The net transfer of the forward momentum px = mvx > 0 of
the electrons to each unit area of the expanding end per unit
time is

[(n �p/2V )(vx − vend)�t][2m(vx − vend)] 1

�t
(14)

= n �p
V

m(vx − vend)
2  n �p

V
mv2

x

(
1 − 2vend

|vx |
)

(15)

where the first square-bracketed factor represents the number
of vx -electrons impinging with a relative velocity (vx − vend)

on a unit area of the receding end of the bar in time �t .
The density of the px > 0 electrons is n �p/2V . The second
square-bracketed factor represents the difference between the
effective incident momentum and the reflected momentum of
each electron bouncing off the free end, i.e., the net momentum
transfer from each such electron to that end. The Doppler-
shifted electron pressure due to electrons of all possible px =
mvx > 0 is

P ′
elec = 2

V

∑
�p

〈n �p〉mv2
x

2

(
1 − 2vend

|vx |
)

. (16)

When vend = 0 we obtain

Pelec = 2

V

∑
�p

〈n �p〉mv2
x

2
= 2

3V

∑
�p

〈n �p〉mv2

2
= 2Uelec

3V
(17)
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which agrees with equation (6). In the limit of kBT � εF it
is easy to show that Pelec = (2/5)neεF, ne being the electron
density and εF the Fermi energy.

When vend > 0 there is a correction δPelec(vend):

P ′
elec = Pelec + δPelec(vend) (18)

where

δPelec(vend) = − 2

V

∑
�p

〈n �p〉mv2
x

|vx | vend (19)

is the Doppler-induced correction to the electron pressure. For
kBT � εF we find

δPelec(vend)  − 1

V

√
8m

3

〈√
ε �p

〉
vend (20)

= −
(√

3mεF

2
ne

)
vend = −5

√
3

2
Pelec

(
vend

vF

)
. (21)

The total correction to the pressure due to the Doppler shift
caused by vend > 0 is obtained by combining equations (13)
and (21):

δP(vend) = δPph(vend) + δPelec(vend) (22)

= −
[

2

cs
Pph(T ) + 5

√
3

2vF
Pelec(T )

]
vend. (23)

As the temperature rises by �T the above Doppler-
induced correction δP(vend) would itself change to �[δP
(vend)] due to the changes in the two partial pressures, �Pph(T )

and �Pelec(T ). By using equations (3) and (6) we obtain

�[δP(vend)] = −
[(

2

cs
γioncion

v + 5
√

3

2vF
γelc

el
v

)
�T

]
vend. (24)

Here cion
v is the specific heat of the ion lattice, and cel

v is the
specific heat of the electron gas in the metal. Addition of the
above total �[δP(vend)] to (�Pph(T ) + �Pel(T )) on the right
side of equation (8) leads to

d2〈x(t)〉
dt2

+ ω2
e 〈x(t)〉 + ηmetal

d〈x(t)〉
dt

= a2 (�Pph + �Pel)

meff
(25)

where the damping coefficient ηmetal and hence the time for
thermal expansion tmetal

L for a metal bar are identified as

ηmetal = 3

Lρ

[
2

cs
γioncion

v + 5
√

3

2vF
γelc

el
v

]
�T = 2

�tmetal
L

. (26)

The above equation constitutes the major result of the present
investigation. The added influence of the free electrons on the
expansion rate is clearly identified as coming from the second
term inside the square bracket. It would make the damping
a little greater and hence the expansion time a little shorter
for metals than for insulators. As discussed in section 5, due
mainly to the ratio of two speed factors (c−1

s /v−1
F ) ∼102 the

influence of the electrons is much smaller than that of the
phonons in ηmetal at T � 10 K. The damping coefficient for
an insulating bar can be obtained simply by setting γel to zero.

5. The speed of thermal expansion of a thin slab of
any shape

So far we have confined our attention to the thermal expansion
rate of a slender long bar. We shall now consider the process
of thermal expansion of a thin slab of finite thickness b, but
of arbitrary shape, as a result of a temperature rise �T in the
surrounding heat reservoir. As in our previous work [1] or in
section 1 we assume that b is small enough compared to the
slab size that the time �tT ≈ b2cV /(Kπ2) for the slab to attain
uniform temperature or ‘thermal-kinetic equilibrium’ is much
shorter than that for the completion of thermal expansion for
the slab in all directions parallel to its surface. For convenience
we use the language appropriate for an insulating slab. The
adaptation to a metallic slab by changing the language is
immediate.

For mathematical convenience we first consider a square
slab of side 2L = 2Na and thickness b � L. As a
consequence, the thermal increase of the thickness in the
direction normal to the slab is almost immediate and we may
then focus on the expansion of the area of the slab. We further
assume that the atoms are arranged in a square lattice with
lattice spacing a on any layer parallel to the surface.

Suppose that, under the pulling force of the outward
phonon pressure �Pph that accompanies �T , every spring
between two nearest neighboring atoms separated by a, either
in the x-direction or the y-direction, is stretched by the same
averaged amount 〈δx(t)〉 or 〈δy(t)〉. However, the atom at
the center (x = 0 = y) of the square is assumed fixed, that
being the position of the center of mass. Indeed the 〈δx(t)〉-
displacements of all the atoms on the y-axis are zero by reasons
of symmetry. This is also true for the 〈δy(t)〉 displacements of
all atoms on the x-axis.

Consider an x-line of spring-connected atoms all at
the same height y = nya. Upon a temperature rise
�T , every atom on this line will have one and the same
transverse displacement ny〈δy(t)〉 while every spring on this
line will have one and the same stretching 〈δx(t)〉. The latter
means that the atom at x = nx a on the line will have a
displacement nx〈δx(t)〉. Here nx , ny are integers counting
from the origin, where nx = 0 = ny . Obviously similar
statements can be made about a y-line of atoms.

We note that the longitudinal stretchings of all the springs
on an x-line at a given height would not interfere with those of
the springs on a neighboring x-line at a different height because
the two lines remain parallel with (and at a uniform separation
of 〈δy(t)〉 from) each other despite the thermal expansion.
For the same reason the longitudinal stretchings of all the
springs on a y-line would not interfere with those of another
y-line. Furthermore, the spring stretchings of an x (y)-line
would not interfere ‘transversely’ with the spring stretchings
of a y(x)-line; all they could do is to change the separation
between two parallel neighboring y(x)-lines. In other words,
the square-lattice arrangement of the atoms in the slab can
occupy an expanded area but the square shape is maintained.
On the other hand, an arbitrary atom located at (x, y) may
be displaced obliquely upon thermal expansion. For example,
the x-component and the y-component of the displacement of

4



J. Phys.: Condens. Matter 21 (2009) 325702 Y C Lee et al

the atom at (x = nx a, y = nya) are, respectively, nx 〈δx(t)〉
and ny〈δy(t)〉 at time t . Since 〈δx(t)〉 is expected to be equal
to 〈δy(t)〉 for the square lattice, upon thermal expansion the
displacement of the atom at (nx a, nya) is directed radially
outward at a slope of ny/nx from the center as physically
expected.

It is clear from the above discussion that an x-line of
atoms behaves just like the long slender bar treated in the main
text, except that the cross-section area is now A = 1a2. The
coefficient of damping to the expanding motion for the slender
bar is given by equation (26) with γel set to zero, namely,

η = 6γ cv�T/Lcsρ (27)

and the time for completion of the expansion is accordingly
given by

�tL ≡ 2

η
= 1

9

(
L

cs

)(
L

�L

)
= 1

9

(
L

cs

)
1

α�T
(28)

so that

vexp ≡ �L

�tL
= 9cs

(
�L

L

)2

= 9cs(α�T )2 (29)

where vexp is the speed of expansion, and γ is the Grüneisen
coefficient, cs the sound speed, cv the heat capacity, ρ the
mass density, α the thermal expansion coefficient, and �L =
αL�T is the final value of the thermal expansion. Both
results are seen to be independent of the cross-sectional area
of the slender bar, since physically every line of atoms in the
expanding bar meets the same fate. Hence these results are
equally valid for the expansion of an x-line of atoms and,
likewise, for a y-line of atoms. Each of these lines is of length
L as reckoned from the fixed end located at the origin, the same
as for the slender bar in the main text.

It is now easy to extend the above arguments to the times
of expansion of a thin slab of any shape. For example, an
arbitrary elliptic slab whose center of mass is at the origin
may be marked off on a square slab also centered at the
origin. The thermal displacement vector of the atom at (x =
nx a, y = nya) on the boundary of the marked ellipse, as
on any other atoms on the square slab, has been shown to
be along a radial direction from the origin, with Cartesian
components nx 〈δx(t)〉 and ny〈δy(t)〉 at time t . With the
times for completing the stretchings 〈δx〉 and 〈δy〉 (=〈δx〉)
of the individual springs known, it follows that the time
for completing the thermal displacement of any atom on the
elliptic boundary is given by

�tL = 1

9

(
L

cs

)
1

α�T
(30)

of equation (28), where the length L now stands for the radial

distance R = a
√

n2
x + n2

y from the center of mass of the ellipse

to that atom on the boundary. For example, the expansion time
of a circular slab of radius R is simply given by the above
formula with L replaced by R. A relevant physical discussion
will be given after equation (32) in section 6.

The adaptation of the above formulae to the case of a
metallic slab of any shape is straightforward. For example,
our major result of ηmetal = 2/�tmetal

L in equation (26) for
a long metallic bar of length L can be taken to represent the
time �tmetal

L of thermal lengthening of the radial distance L as
measured from the center of mass to any point on the boundary
of a metallic slab of any shape in the expansion. A numerical
estimate of �tmetal

L can be immediately made for any metallic
slab when the material parameters such as ρ, γion, γel, cion

v , cel
v ,

cs, vF are given.

6. Physical discussion and summary

For convenience we shall, in this section, again revert back to
the language appropriate for a thin long bar, for the change to
a thin slab of any shape can be adapted from section 5.

It is well known [8] that, for kBT � εF, cel
v = π2

2 nekB( T
TF

)

where TF ∼ 8×104 K. Also, for T � θD = h̄cs
kB

(6π2nion)
1
3 , the

Debye specific heat cion
v  12π4

5 nionkB( T
θD

)3. In the temperature

range of T � 10 K, T/TF ∼ 10−3 ∼ (T/θD)3 we see that
cel
v  cion

v . It follows that, since γion � 2 and γel = 2/3, (i.e.,
γion ∼ γel) the metallic thermal expansion coefficient [5]

αmetal = (γioncion
v + γelc

el
v )/3B (31)

will have comparable contributions to the amount of thermal
expansion from the ionic (the phonon) part and the electron
part, except that the former depends on T 3 while the latter
depends linearly on T . On the other hand, it is significant
to note that, due to the factor 1/cs in the ionic contribution
and the factor 1/vF in the electronic contribution to ηmetal of
equation (26), the speed of thermal expansion of a thin long
bar of length L given by

vexp = �L

tmetal
L

= ηmetalαmetal L�T

2
� ηphαmetal L�T

2
(32)

 3γioncion
v αmetal(�T )2

csρ
(33)

is actually dominated by the phonon contribution in this
temperature range. Hypothetically, if an insulating bar
composed purely of ions and a metallic bar composed purely of
electrons were heated up side by side, we might be surprised
to find that the sluggish phonons in the pure ion bar should
finish their race of bar expansion much sooner (by a factor of
∼102) than the speedy electrons in the other bar, in spite of the
fact that the final amounts of expansion of the two bars might
be roughly the same. This ratio would become even greater at
higher temperatures. It all stems from the two equations (34)
and (35) below

�t ion
L = 2

ηion
= 1

9

(
L

cs

)
1

αion�T
= 1

9

(
L

cs

)(
L

�L ion

)
(34)

�tel
L = 2

ηel
= 4

15
√

3

(
L

cs

)(
vF

cs

)
1

αel�T

= 4

15
√

3

(
L

cs

)(
L

�Lel

)(
vF

cs

)
(35)

which will be physically explained later. We also note that
since ηmetal ∝ �T/L, the speed vexp = �L/tmetal

L is seen,
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from equation (32), to depend only on the intrinsic material
parameters in addition to �T , but not on the geometric
parameters such as the length L or the shape of the expanding
specimen. It is thus tempting to conjecture that this result could
be extended so that, as the different parts of a specimen of any
given geometric shape (not just a bar) expand individually as
dictated by the same αmetal, the times required for the respective
amounts of expansion would simply follow proportionately the
linear distances from the center of mass of that shape. This
conjecture has actually been proved in section 5. In the limit
of �T → 0, equation (32) shows vexp → 0 as intuitively
expected.

When the forward physical momentum �p of an acoustic
phonon (or a free electron) is reflected elastically at the
expanding free end of the bar due to a temperature rise
�T , its magnitude together with its energy would suffer
a change caused by the Doppler shift. This shift, that
appears as a reduction of the phonon (electron) momentum,
is usually perturbatively proportional to the momentum itself
as long as the fractional change is small. The corresponding
reduction in the individual phonon (electron) energy is what
microscopically gives rise to the energy dissipation that is
accompanied by the damping of the forward phonon (electron)
motion. Similarly, when a whole bunch of such phonons
(electrons) rushes forward towards, and is subsequently
reflected by, the expanding free end, the Doppler correction
appears now as a negative change of the phonon (electron)
pressure that is perturbatively proportional to the prevailing
phonon (electron) pressure itself. Again the accompanying
energy dissipation leads to the damping of the expanding
motion of the macroscopic long thin bar. This is the
physical content of equation (26). It also follows that, in the
hypothetical race, the faster electrons suffer a perturbatively
smaller fractional loss (∝vend/vF) of energy from the Doppler
correction than the slower phonons (∝vend/cs), hence resulting
in (ηel

L /ηion
L )−1 = �tel

L /�t ion
L ∼ vF/cs of equations (34)

and (35).
One indication from equation (26) might seem puzzling.

As �T → 0, the expansion time �tmetal
L ∝ 1/�T →

∞! Actually this is as it should be. For �T → 0 means
�P = (�Pph + �Pel) ∝ �T → 0, leading eventually to
the vanishing of the inhomogeneous term on the right side

of the differential equation (25). This, in turn, leads to an
ever oscillating behavior of 〈x(t)〉 with frequency ωe and an
amplitude determined by the initial condition. In a word, it
would never be damped, implying �tmetal

L → ∞. Only when
�T �= 0 would the Doppler correction have a chance to damp
the oscillations into a finite 〈x(t)〉 as t → ∞ [1].

Some possibly related works concerning ‘extended ir-
reversible thermodynamics’ [9–11] and some other works
concerning radiation pressure resulting from wave propaga-
tion [12], as well as radiation forces associated with heat
propagation [13], have recently been brought to our attention.
A brief review of some of these works has been included in [1].
We shall, however, postpone a more detailed investigation
of the relation of these to our present work for the near
future.
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